25 research outputs found

    Soluble Antigen Arrays utilize molecular and physical features to suppress Experimental Autoimmune Encephalomyelitis

    Get PDF
    Blockade of immune cell adhesion during antigen recognition may suppress the inflammatory immune response in autoimmune diseases. Employing a novel N-oxime chemistry, Soluble Antigen Arrays (SAgAs) were synthesized to simultaneously display intracellular cell-adhesion molecule-1 (ICAM-1) inhibitor and antigen. Hyaluronic acid (HA) was used as a backbone and two peptides were grafted, an ICAM-1 inhibitor (LABL) derived from αL-integrin and an encephalitogenic epitope of proteolipid protein (PLP). Mice with experimental autoimmune encephalomyelitis (EAE) that received subcutaneous (s.c.) injections of SAgAs displaying both peptides showed significantly lower clinical disease scores and incidence, as well as better body weight maintenance than those treated with HA polymer alone. Multivalent presentation of cell-adhesion inhibitor (LABL) alone or antigen (PLP) alone was also evaluated. Treatment with hyaluronic acid grafted with only PLP antigen or only LABL peptide did not provide significant disease suppression and, in the case of LABL, actually exacerbated the disease. When hyaluronic acid was replaced with a PLGA nanoparticle displaying grafted LABL and PLP (NP-ArrayLABL-PLP), an analogous treatment strategy with the NP-Array¬LABL-PLP did not provide significant EAE suppression. Next, the effect of SAgA molecular weight and cell-adhesion molecule target were evaluated. SAgAs with inhibitors targeting intracellular cell-adhesion molecule-1 (ICAM-1) or its ligand leukocyte-associated function antigen-1 (LFA-1) were equally effective. Also, the disease onset was delayed and severity was significantly reduced when the molecular weight of the SAgA was decreased. Animal imaging suggested that the smaller SAgA drained from the injection site more quickly than the larger SAgA, which may suggest enhanced transit to the regional lymphatics. Analysis of the cytokine production profiles of all treatments demonstrated that reducing SAgA size also provided the largest change in inflammatory cytokine response. SAgA performance, therefore, depended on lymphatic drainage as dictated by size, as well as molecular signaling resulting from co-grafting cell-adhesion inhibitor and antigen. Future research should attempt to correlate SAgA transport with efficacy and explore the effect of grafting different inhibitors or activators of co-stimulation

    Hyaluronic acid graft polymers displaying peptide antigen madulate dendritic cell response in vitro

    Get PDF
    A novel oxime grafting scheme was utilized to conjugate an ICAM-1 ligand (LABL), a cellular antigen ovalbumin (OVA), or both peptides simultaneously to hyaluronic acid (HA). Samples of HA only and the various peptide grafted HA were found to bind to dendritic cells (DCs). HA with grafted LABL and OVA showed the greatest binding to DCs. Dendritic cells treated with HA, HA with grafted LABL, or HA with grafted LABL and OVA, significantly suppressed T cell and DC conjugate formation, T cell proliferation and reduced proinflammatory cytokine production compared to untreated cells. These results suggest that HA serves as an effective backbone for multivalent ligand presentation for inhibiting T cell response to antigen presentation. In addition, multivalent display of both antigen and an ICAM-1inhibitor (LABL) may enhance binding to DCs and could potentially disrupt cellular signaling leading to autoimmunity

    Routes of Administration and Dose Optimization of Soluble Antigen Arrays in Mice with Experimental Autoimmune Encephalomyelitis

    Get PDF
    Soluble Antigen Arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared to distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation was included since reports suggest T cells are licensed in the lungs before moving onto the CNS1,2. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, or 10 also reduced efficacy compared to injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via pulmonary instillation, however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice

    Soluble Antigen Arrays Displaying Mimotopes Direct the Response of Diabetogenic T Cells

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Biology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acschembio.9b00090.Type 1 diabetes (T1D) is an autoimmune disorder which develops when insulin-producing, pancreatic beta cells are destroyed by an aberrant immune response. Current therapies for T1D either treat symptoms or cause global immunosuppression, which leave patients at risk of developing long-term complications or vulnerable to foreign pathogens. Antigen-specific immunotherapies have emerged as a selective approach for autoimmune diseases by inducing tolerance while mitigating global immunosuppression. We previously reported SAgAs with multiple copies of a multiple sclerosis (MS) autoantigen grafted onto hyaluronic acid (HA) as an efficacious therapy in experimental autoimmune encephalomyelitis. While the immune response of MS is distinct from T1D, the mechanism of SAgAs was hypothesized to be similar and via induction of immune tolerance to diabetes antigens. We synthesized SAgAs composed of HA polymer backbone conjugated with multiple copies of the T1D autoantigen mimotope p79 using aminooxy chemistry (SAgAp79) or using copper-catalyzed alkyne-azide cycloaddition (cSAgAp79) chemistry. SAgAs constructed using the hydrolyzable aminooxy linkage, thus capable of releasing p79, exhibited physicochemical properties similar to the triazole linkage. Both SAgAp79 versions showed high specificity and efficacy in stimulating epitope-specific T cells. SAgAs can be taken up by most immune cell populations but do not induce their maturation, and conventional dendritic cells are responsible for the brunt of antigen presentation within splenocytes. cSAgAp79 was more stimulatory than SAgAp79 both in vitro and in vivo, an effect that was ascribed to the peptide modification rather than the type of linkage. In summary, we provide here the first proof-of-principle that SAgA therapy could also be applicable to T1D.NIH T32 GM008545Juvenile Diabetes Research Foundation (2-SRA-2017-312-S-B)NIH Shared Instrumentation Grant # S10RR024664NSF Major Research Instrumentation Award # 1625923NIH S10OD020056Diabetes Research Center grant P30DK063608NIH HHSN272201300006

    Acute B-Cell Inhibition by Soluble Antigen Arrays Is Valency-Dependent and Predicts Immunomodulation in Splenocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.9b00328.Antigen valency plays a fundamental role in directing the nature of an immune response to be stimulatory or tolerogenic. Soluble Antigen Arrays (SAgAs) are an antigen-specific immunotherapy that combats autoimmunity through the multivalent display of autoantigen. While mechanistic studies have shown SAgAs to induce T and B-cell anergy, the effect of SAgA valency has never been experimentally tested. Here, SAgAs of discrete antigen valencies were synthesized by click chemistry and evaluated for acute B-cell signaling inhibition as well as downstream immunomodulatory effects in splenocytes. Initial studies using the Raji B-cell line demonstrated SAgA valency dictated the extent of calcium flux. Lower valency constructs elicited the largest reductions in B-cell activation. In splenocytes from mice with experimental autoimmune encephalomyelitis, the same valency-dependent effects were evident in the downregulation of the costimulatory marker CD86. The reduction of calcium flux observed in Raji B-cells correlated strongly with downregulation in splenocyte CD86 expression after 72 hours. Here, a thorough analysis of SAgA antigenic valency illustrates that low, but not monovalent, presentation of autoantigen was ideal for eliciting the most potent immunomodulatory effects.Madison and Lila Self Graduate Fellowship at the University of KansasNIH T32 GM00854

    Improving Wingsuit Performance (proposed research)

    Get PDF
    Wingsuit flying is the newest skydiving discipline. Wingsuits have flying surfaces attached to the arms and legs of a skydiver that enable the skydiver to fly large horizontal distances with a very slow descent rate. Despite the amazing advances in this new sport, Team Eagle Wingsuit believes that the design and construction of wingsuits is suboptimal due to the type of materials used to make wingsuits, the type of airfoils used and the configuration of current wingsuits. Team Eagle Wingsuit believes that by methodical scientific investigation the performance of a wingsuit can be measured and we can discover techniques that can be used to gently improve the performance of wingsuits

    Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Molecular Pharmaceutics, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.molpharmaceut.8b01250.Autoimmune diseases are believed to be highly dependent on loss of immune tolerance to self-antigens. Currently, no treatments have been successful clinically in inducing autoantigen-specific tolerance, including efforts to utilize antigen-specific immunotherapy (ASIT) to selectively correct the aberrant autoimmunity. Soluble antigen arrays (SAgAs) represent a novel autoantigen delivery system composed of a linear polymer, hyaluronic acid (HA), displaying multiple copies of conjugated autoantigen. We have previously reported that Soluble Antigen Arrays proteolipid protein (SAgAPLP) induced tolerance to a specific multiple sclerosis (MS) autoantigen, proteolipid peptide (PLP). Utilizing SAgA technology, we have developed a new ASIT as a possible type 1 diabetes (T1D) therapeutic by conjugating human insulin to HA, known as Soluble Antigen Array Insulin (SAgAIns). Three types were synthesized: low valency lvSAgAIns (2 insulins per HA), medium valency mvSAgAIns (4 insulins per HA) and, high valency hvSAgAIns (9 insulins per HA) to determine if valency differentially modulates the ex vivo activity of insulin-binding B cells (IBCs). Extensive biophysical characterization was performed for the SAgA molecules. SAgAIns molecules were successfully used to affect the biologic activity of IBCs by inducing desensitization of the B cell antigen receptors (BCR). SAgAIns bound specifically to insulin-reactive B cells without blocking epitopes recognized by antibodies against the Fc regions of membrane immunoglobulin or CD79 transducer components of the BCR. Pre-incubation of IBCs (125Tg) with SAgAIns, but not HA alone, rendered the IBCs refractory to re-stimulation. SAgAIns induced a decrease in BCR expression and IP3R-mediated intracellular calcium release. Surprisingly, SAgAIns binding to BCR on the surface of IBCs induced the observed effects at both high and low SAgAIns valency. Future studies aim to test the effects of SAgAIns on disease progression in the VH125.NOD mouse model of T1D.NIH T32 GM00854

    Single-Step Grafting of Aminooxy-Peptides to Hyaluronan: A Simple Approach to Multifunctional Therapeutics for Experimental Autoimmune Encephalomyelitis

    Get PDF
    The immune response to antigens is directed in part by the presence or absence of costimulatory signals. The ability to coincidently present both antigen and, for example, a peptide that inhibits or activates the costimulatory pathway, would be a valuable tool for tolerization or immunization, respectively. A simple reaction scheme utilizing oxime chemistry was identified as a means to efficiently conjugate different peptide species to hyaluronan. Peptides synthesized with an aminooxy N-terminus reacted directly to hyaluronan under slightly acidic aqueous conditions without the need for a catalyst. The resulting oxime bond was found to rapidly hydrolyze at pH 2 releasing peptide, but was stable at higher pH values (5.5 and 7). Two different peptide species, a multiple sclerosis antigen (PLP) and an ICAM-1 ligand (LABL) known to block immune cell stimulation, were functionalized with the aminooxy end group. These peptides showed similar reactivity to hyaluronan and were conjugated in an equimolar ratio. The resulting hyaluronan with grafted PLP and LABL significantly inhibited disease in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Aminooxy-peptides facilitate simple synthesis of multifunctional hyaluronan graft polymers, thus enabling novel approaches to antigen-specific immune modulation

    Hyaluronic acid graft polymers displaying peptide antigen modulate dendritic cell response in vitro.

    Get PDF
    A novel oxime grafting scheme was utilized to conjugate an ICAM-1 ligand (LABL), a cellular antigen ovalbumin (OVA), or both peptides simultaneously to hyaluronic acid (HA). Samples of HA only and the various peptide grafted HA were found to bind to dendritic cells (DCs). HA with grafted LABL and OVA showed the greatest binding to DCs. Dendritic cells treated with HA, HA with grafted LABL, or HA with grafted LABL and OVA significantly suppressed T cell and DC conjugate formation and T cell proliferation and reduced proinflammatory cytokine production compared to untreated cells. These results suggest that HA serves as an effective backbone for multivalent ligand presentation for inhibiting T cell response to antigen presentation. In addition, multivalent display of both antigen and an ICAM-1 inhibitor (LABL) may enhance binding to DCs and could potentially disrupt cellular signaling leading to autoimmunit

    Co-delivery of autoantigen and B7 pathway modulators suppresses experimental autoimmune encephalomyelitis

    No full text
    Autoimmune diseases such as multiple sclerosis (MS) are characterized by the breakdown of immune tolerance to autoantigens. Targeting surface receptors on immune cells offers a unique strategy for reprogramming immune responses in autoimmune diseases. The B7 signaling pathway was targeted using adaptations of soluble antigen array (SAgA) technology achieved by covalently linking B7-binding peptides and disease causing autoantigen (proteolipid peptide (PLP)) to hyaluronic acid (HA). We hypothesized that co-delivery of a B7-binding peptide and autoantigen would suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Three independent B7-targeted SAgAs were created containing peptides to either inhibit or potentially stimulate the B7 signaling pathway. Surprisingly, all SAgAs were found to suppress EAE disease symptoms. Altered cytokine expression was observed in primary splenocytes isolated from SAgA-treated mice, indicating that SAgAs with different B7-binding peptides may suppress EAE through different immunological mechanisms. This antigen-specific immunotherapy using SAgAs can successfully suppress EAE through co-delivery of autoantigen and peptides targeting with the B7 signaling pathway
    corecore